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Dynamic Elastic Electron Scattering I:
Bloch Wave Theory

The kinematic scattering theory illustrated in Chapter 1 holds only for crystals
thinner than about 2 nm (Hoerni, 1956). The general characteristics, such as the
positions of Bragg beams, can be precisely determined by the kinematic theory. The
intensity of each reflection, however, is largely affected by multiple scattering
effects among existing beams, because the interaction between the electron and the
crystal is so strong that multiple-scattering effects are unavoidable. Therefore
quantitative data analysis has to be performed based on dynamic scattering calcu-
lations. For this reason, the present and following chapters are devoted to the
dynamic scattering behavior of electrons.

Diffraction theories of high-energy electrons have been established for many
years. One of the most classical approaches is the Bloch wave theory, proposed by
Bethe (1928). This theory has taken a dominant role in calculating convergent beam
electron diffraction (CBED) and diffraction contrast imaging. In Chapter 2, the
Bloch wave is introduced and its general properties are illustrated. Some simplified
cases are discussed to illustrate applications of the theory. Finally the theory is
extended to imperfect crystals.

2.1. RELATIVISTIC CORRECTIONS IN SINGLE-ELECTRON
SCATTERING THEORY

Based on the first principles approach, we consider the fundamental equation
that governs high-energy electron scattering in crystals. Before we show the
mathematical description, it is important to consider the nature of the events we are
studying. The average distance between successive electrons that strike the crystal
ina TEM is about 0.2 mm (for 100-keV electrons) if the electron flux is on the order
of 10'2 e/s. This distance is much larger than the thickness (typically less than 0.5

2?2
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um) of the specimen; thus the interaction between successive incident electrons is
extremely weak. Therefore interaction between the incident beam and the crystal
can be treated as a case of one electron a time. In other words, electron diffraction
theory is basically a single-electron scattering theory. The entire discussion of this
book is based on this assumption. .

Strictly speaking, high-energy electron scattering obeys the Dirac equation.
The Dirac equation contains not only the relativistic effects but also electron spin.
It has been shown by Fujiwara (1961) and Howie (1962) that electron spin is
negligible in transmission electron diffraction, but relativistic corrections in the
electron mass and wavelength have to be considered in both kinematic and dynamic
scattering theories (see Gevers and David, 1982, for a review). In general, the
solution of the Dirac equation for high-energy electron diffraction is quite complex
(Fujiwara, 1961). We intend to derive a relativistically corrected Schrédinger-like
equation. The solution of the equation should be sufficient for accuracy in quanti-
tative electron microscopy. The relativistic energy momentum conservation equa-
tion for an electron accelerated to a kinetic energy of e(Uo + V) is

W2 = p*c} + mich = [e(Uo + V) + moch]? (2.12)

and

, mock (2.1b)

2
W= =—————=e(Uo+V)+moco
e = T = o) 172

where V is the electrostatic potential field of the crystal and co is the speed of light.
Neglecting the V? term, combining Egs. (2.1a-b) yields

PP — 2mecheV = eUg(eUo + 2moch) (2.2)
Replacing p by the operator —ifiV and applying Eq. (2.2)on ¥, a Schrédinger-like
equation (Humphreys, 1979; Spence, 1988a) is derived
i) 2

-— V¥ ypeVP=EY (2.3)
2mop

where
el
E=eUdl + —5]
2moco

and the relativistic factor y = mo/m. E is electron energy with relativistic correction.
Therefore under the first-order approximation, the Schrodinger equation can be
used to describe high-energy electron scattering if relativistic corrections are
properly considered. For V = 0, the free-space solution of Eq. (2.3) gives exactly
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the same wavelength as that originally based on de Broglie’s relation in Eq. (1.3).
By defining an effective crystal potential

2ymge (2.4a)
Um = "’1—2 V(o)

and the electron wave number as

(2mOE)l/2 (24b)
K=——
h
Eq. (2.3) is rewritten as

{(V2+472[U® + KA} P® =0 (2.5)

This is the fundamental equation that governs the scattering behavior of electrons

in crystals. Discussions in Chapters 2-5 show how to solve this equation using
various methods.

2.2. BETHE THEORY

2.2.1. Basic Equations

The solution of Eq. (2.5) was first given by Bethe (1928). The full solution is
written as a linear superposition of Bloch waves

() =Y aBi(D) (2.6)

each Bloch wave Bi(r) is an eigen solution of Eq. (2.5), and coefficients ¢; are
determined by boundary conditions. Equation (2.6) means that each Bloch wave is
an eigenstate of the electron crystal system, and the electron wave function is a
linear superposition of Bloch waves. The probability that the ith Bloch wave is
excited is determined by the superposition coefficient ¢t;. Although there are many
Bloch wave states in the crystal, boundary conditions determine which waves are
excited. This is similar to the selection of Bragg beams by the diffracting condition
in electron diffraction. Even though there are many possible Bragg reflections,
those in the diffraction pattern are selected by the initial diffracting condition, as
illustrated by the Ewald sphere in Fig. 1.7.

The Bloch wave theory is usually convenient for examining the diffraction of
a periodically structured crystal. In this case, the modified crystal potential U can
be expanded as a Fourier series based on reciprocal lattice vectors,
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K b=(x,y)
B fa

g 0 h

Figure 2.1. The coordinate system used in describing the transmission electron diffraction.

U® = Y, Ug exp(2mig ) (2.7a)

g
with

==

U, Y, V; exp(-2mig )
o

Similarly the Bloch wave within the crystal may also be written as a Fourier
series

B =Y C; exp[2nmi(k + g)-1] 2.8)

8

where C; is the Bloch wave coefficient for Bragg reflection g. For high-energy
electron diffraction, a Bloch wave is neither a spherical wave nor a single plane
wave but a linear superposition of plane waves with wave vectors (k + g). ABloch
wave contains many plane wave components.

Equation (2.8) is introduced to convert a second-order differential equation
into a set of linear algebra equations whose solution can easily be obtained from
matrix diagonalization. Substituting Eqgs. (2.7) and (2.8) into Eq. (2.5) yields

3 ([K? - (k+8)1Cs + Y, Ug-#Ci} expl2ni(k + g)1] =0 2.9)

g h
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Figure 2.2. The Ewald sphere construction of electron diffraction at on-Bragg (dashed lines) and
off-Bragg (solid lines) conditions. The excitation error S, is indicated.

where h is the reciprocal lattice vector and the interaction between g and h beams
is determined by U, Equation (2.9) holds for all r in the crystal. Hence the
coefficient of each exponential term must be zero. For the g reflection,

(K2~ (k+8)1Ce + Y, Up-nCh =0 (2.10a)
h

Equation (2.10a) is actually a set of coupled equation for different g reflections. By
choosing

k=K+vn (2.10b)

where n is a unit vector inward and normal to the crystal slab surface, as shown in
Fig. 2.1. We have

(K2~ (k+ g)*] = 2KS, — 2(K + g)-nv — v> @.11a)
where the excitation errors S, are defined as
2KS; = K> — (K+g) (2.11b)

The S is the distance from a reciprocal lattice point g to the intersection point of a
line, drawn from g in parallel to K, with the Ewald sphere (see Fig. 2.2). The Bragg
condition is defined by S; = 0, which means the Bragg beam is located just on the
surface of the Ewald sphere. By neglecting the v? term for high-energy transmission
electron diffraction (the error introduced by this approximation is very small
according to Kim and Sheinin, 1982), substituting Eq. (2.11a) into (2.10a) yields
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2KSeCy+ Y Up-#Ch=2(K+g)mvCy (2.12)
h

This is the fundamental equation of Bloch wave theory. Characteristics of Eq. (2.12)
are discussed in the next section.

2.2.2. Characteristics of Bloch Waves

We now consider transmission electron diffraction (i.e., the Laue case) by
assuming that all the gs lie in a plane perpendicular ton, i.e., g'n = 0. This condition
restricts the following solution to the ZOLZ reflections if n is antiparallel to the z
axis. Equation (2.12) can readily be written as

2KS,Ce + 2 Ue-Cr=2Knv Cg (2.13)
h

or expressed in a matrix form
ACY =2Kv;CO 2.14)

where elements of the A matrix are Agh = 2KSg0gh + Ug— and K, = K-n. If m beams
are considered in the scattering, A is an (mxm) matrix, and there are m eigenvalues
vi and m Bloch waves, each Bloch wave having m plane wave components.
Equation (2.14) is just an eigen equation of _Cg) with eigenvalue v;. Each eigen
solution gives the superposition coefficients C§ ) of the ith Bloch wave. The number
of Bloch waves equals the number of beams or the dimension of the C matrix.

The set of equations represented by Eq. (2.12) is exact provided an infinite
number of g values is considered. In practice the number of beams can be reduced
depending on the required accuracy of numerical calculations.

Since U(r) is real for elastic scattering without absorption, its Fourier coeffi-
cients satisfy U, = UZ,, and the matrix A is thus Hermitian. Hence the eigenvalues
v;arereal (Landau and Lifshitz, 1977), although the eigenvectors C?) are, in general,
complex. The eigenvector C matrix is unitary (Rez, 1976; Humphreys, 1979), i.e.,
the inverse of C is the complex conjugate and the transpose of C

cl=c* (2.15)
Explicitly writing this equation yields

2 C‘(gi)csli)* =6g,h (2163)

and
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2 Cg)Cg)* =i, (2.16b)
g

where superscriptions i and j are added to represent the ith and the jth Bloch waves.
This means that eigenvectors form a complete orthonormal set if the crystal
potential is a real function. The following relations also hold among the eigenvec-
tors and eigenvalues (Fukuhara, 1966; Spence, 1988a):

CPk+h)=COk) (2.16¢)
v,-(k+ h) = v,-(k) + S (216d)

and
CcOw) = cYk (2.16e)

A comprehensive description of the symmetry of Bloch waves is given by Gjgnnes
and Taftg (1993).

We now determine the superpersition coefficients a; of Bloch waves. The o;
coefficients are easily obtained only if the incident wave is a plane wave. In the
Laue case, the boundary condition at z = 0 requires Y(K,b) = exp[27iK-b] or

> iy CP exp[2mi(K + g) 1] = exp[27iK-b]
i g
This equation is satisfied if ¢;; = Cg)*, considering the orthonormal relationship in

Eq. (2.16a). Thus Eq. (2.6) becomes

YK=Y, C§ B(n) (2.17a)

with

B(® =Y C? exp[2mi(K + g)-r+2mivi] (2.17b)

g
.wl‘lere the direction of the z axis is parallel to the direction of the incident beam. It
1s important to point out that the Bloch wave solution introduced in Eq. (2.17) can

be applied to calculate only the diffraction of a plane wave. Separated calculations
are required if the incident electron probe is a superposition of plane waves.

2.2.3. Orthonormal Relationship of Bloch Waves

For Laue reflections with g lying in the x-y plane, i.e., g; = 0, we now prove
the orthonormal relation of the Bloch waves. From Egq. (2.17b),
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[arBi® B =Y, & c [ drexpl2mith— g)yb+2mi(v; - v)a]
gh

= Z Cg)* Cg) J.dz exp[2mi(v; - vzl = 5i,i (2.18)
8

This means that Bloch waves are an orthonormal set. But this orthogonal relation
holds only in the symmetric Laue case (i.e., g; = 0 for the ZOLZ) under the
approximation of high energy (Kim and Sheinin, 1987). In this case, the orthonor-
mal relation holds regardless of whether the Bloch function is degenerate or
nondegenerate. Thus the solution of the Schrédinger equation can usually be
expanded as a linear superposition of Bloch waves. For a general case with g; #0,
two Bloch functions are orthogonal if v;# v;. If vj=v;, however, the two Bloch
functions may not be orthogonal. The orthonormal relation of the Bloch waves is
useful in solving the Green function solution of the Schrédinger equation for a point
electron emitter (see Chapter 10).

2.2.4. Bethe Theory and Band Structure Theory

Bethe’s theory for electron diffraction is closely related to the energy band
concept in the electronic theory of solids, since both represent the electronic state
in terms of Bloch functions (Kambe and Moliere, 1970). Morse (1930) pointed out
the close connection between the two theories and demonstrated that the Bragg
peaks observed in low-energy electron diffraction occur in energy ranges that are
forbidden by the band structure of the crystal. For high-energy electron diffraction,
the two theories may be compared with each other in the following respects:

In band structure theory, Bloch functions are regarded as representing station-
ary states of valence electrons in a crystal. The propagation vector k is given as a
parameter, and the eigenvalue of the energy E(K) is calculated as a function of k.
In Bethe’s theory, on the other hand, Bloch functions are used to construct the wave
function of the scattered electron inside the crystal, given the energy of the incident
electrons. Thus the dispersion surface is an equal energy surface in reciprocal space
similar to the Fermi surface in band theory.

In band theory, using the Hartree approximation, the potential is defined as the
average Coulomb potential due to the nuclei, the ion core electrons, and all the
valence electrons except the one valence electron under consideration. In this case,
the exchange and correlation effects between the electron under consideration and
all other electrons are not negligible, and thus these affect the Hartree potential. For
electron diffraction, however, the Bethe theory states that the potential is due to the
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nuclei and all electrons belonging to the crystal, and it is not affected by incident
electrons.

In band theory, the plane wave expansion of the Bloch function is usually
poc?rly convergent, especially near the nuclei where the wave function varies
rapidly. In the Bethe theory for electron diffraction, the convergence of the plane

wave expansion is usually sufficiently rapid. In general, the number of plane waves
is the number of beams in the diffraction pattern.

2.3. TWO-BEAM THEORY

’ljh? most important advantage of the Bloch wave approach is its clarity when
describing the excitation of each Bloch wave. We now consider a case in which
only two beams are involved. Equation (2.14) becomes

—2K,v U, Co\_q (2.19)
Ug 2KSg—2KnV Cg B

The eigenvalues v are obtained by setting the determinant of the matrix equal to
zero, thus leading to the following solutions:

_ {KSp £ [(KSp)* + U %) (2.20a)

v
12 2K,

where superscript 1 refers to + and 2 to —. The difference of v; — vz is

[(KSg)? + U112 (2.20b)

Av=vy1—vy= X
n

which corresponds to the gap between the two dispersion surfaces; this is discussed
later in Chapter 2. If we set

_KSe _
w—,—UgT—Sgég

where ¢ = K/ U, is the extinction distance, the ratio of Co and C, can be found from
Eq. (2.19)

(1,2)
ey (2.20c)
= s 2172
[CO] wx(l+w)

By defining yo = arcctg w and considering the normalization relation ICol? + ICgl? =
1, the Bloch wave coefficients are

¢’ =P =cos(0/2) (Z21a)
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and
P =-c? =sin(y/2) (2:21b)
corresponding to Bloch waves of
Bi(1) = expRriK-r+ 2miviz)[cos (yo/2) + sin (y0/2) exp(2rign)] (2.21¢)
and
Ba(v) = exp(2iKer + 2mivaz)[sin (yo/2) — cos (y0/2) exp(2rign)] (2.21d)

The two Bloch waves under the two-beam approximation are useful in qualitatively
illustrating the physics involved in some imaging and diffraction processes. Sub-
stituting Eq. (2.21) into Eq. (2.17), the intensity of the diffracted beam at the exit
face, where z=d, is

|U,P sin? (ndAv) (2.22a)

2
= i)* ~i) 2. -
I=|Y " CYexprivid)| = T

1

and
I=1-1 (2.22b)

The oscillation of Ip with the variation of specimen thickness d corresponds to
thickness fringes observed in bright-field TEM images, as shown in Fig. 2.3a. The
dark-field image of the same area (Fig. 2.3b) recorded using the g reflection shows
complimentary contrast as expected theoretically. Two adjacent thickness fringes
correspond to a thickness change of Ad=1/Av ={g/(1 +uw?)!/2, where & is g
dependent. At the Bragg condition w = 0, Ad = ;. This means that the extinction
distance is the thickness variation between two adjacent thickness fringes under the
Bragg reflection condition.

Using the two-beam theory, we now show the channeling effect in electron
diffraction. For simplicity, we consider the expressions of Egs. (2.21¢) and (2.21d)
under the Bragg condition (i.e., w = 0)

Bi(r)= —\[1?— expniKer + 2miviz)[1 + exp(2rnigr)]

=2 cos (ngv) expuiKr+ 2miviz + migT)
with
IBi(®P =2 cos’ (gD (2.22¢)

and
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Figure 2.3. (a) Bright—ﬁc.eld image and (b) g = (004) dark-field image of a thin silicon crystal oriented
near the [100] zone, showing the thickness fringes. The contrast of the bright-field image is complimen-
tary to that of the dark-field image. Beam energy is 100 keV.

1
By(r) = B exp(2riK-r+ 27ivaz)[1 — exp(2wig-)]

=i\2 sin (ng1) exp(RuiK-r+ 27ivoz + 7ig-r)
with

IBy(®) = 2sin®(zg-p) (2.22d)
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Figure 2.4. A schematic diagram of two types of Bloch wave fields under two-beam Bragg condition
at the reflecting position in a simple cubic lattice. In both cases, the current flow vector (normal to the
dispersion surface) is parallel to the reflecting planes. The B) wave is more strongly absorbed than B>
due to a larger probability of inelastic excitation.

The electron current of each Bloch wave flows, on average, parallel to the Bragg
planes, but it is modulated across the atom planes, so that for Bloch wave Ba(r) the
maximum occurs between the atomic planes (Fig. 2.4). For Bloch wave Bi(r), the
situation is reversed, and the current is concentrated on the atom planes, i.e., a
stronger channeling effect . The channeling propagation of Bloch wave Bi(r) along
atom planes effectively increases the probability of inelastic excitations of the
atomic inner shells, resulting in a stronger absorption effect (see Chapter 6).

The channeling effect illustrated here has many important applications in
imaging of inelastically scattered electrons (see Chapter 11). Electron channeling
along the paths of lowest potential energy (i.e., atomic rows) in crystal enhances
the excitations of X-rays and Auger electrons in the atomic rows. The X-ray signals
from impurity atoms located within certain crystal planes can be maximized if
proper diffracting (or channeling) conditions are set up. This technique is known
as atom location by channeling enhanced microanalysis (ALCHEMI) (see Spence,
1992, for a review).

Equation (2.22a) can be used to estimate the maximum crystal thickness
smaller than which the kinematic scattering (or single-scattering) approximation
holds (Hoerni, 1956). The scattering amplitude of the g beam under the kinematic
scattering approximation increases linearly with increasing crystal thickness d. In
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other words, the diffracted intensity increases with d2. For simplicity, we start with
Eq. (2.22a), assuming Bragg conditions, so that Iy = sinz(nd/fg). For small thick-

ness satisfying nd/&, << 1
2 2
L= nd) _(#=dU,
4 fg K

as expected from kinematic scattering theory. For low-index reflections, the extinc-
tion distance ¢, is a few tens of nanometers. Therefore for kinematic scattering
theory to hold, d << &,/n. In this thickness range, electron scattering can be
approximately considered the result of single scattering, so that the high-resolution
transmission electron microscopy (HRTEM) images of thin crystals are referred to
structural images, from which positions of atoms may be directly identified from
the image. For crystals with larger thicknesses, multiple scattering effects disturb
the localized distribution of the incident electrons, so that the cross scattering of
the electrons complicates the image interpretation. In this case, image simulation
becomes indispensable.

Amore sophisticated two-beam theory has also been derived for wedge-shaped
and finite polyhedron crystals (Kato, 1952). The major task involved in irregular-
shaped crystals is to match the solutions at the boundary. This can be easily done
for the two-beam case, but the situation may become very complex if a many-beam
theory is involved.

The theory developed here applies to purely elastically scattered electrons
without absorption. Inelastic scattering during electron diffraction causes the
incident electron to lose not only energy but also become angularly redistributed
between Bragg beams. If the objective aperture is used to select one or more Bragg
reflected beams to form an image, many of the inelastically scattered electrons are
thus excluded from the image. These electrons are effectively absorbed. In
general, the absorption effect is characterized by an imaginary potential in
elastic-scattering calculations, and this effect decreases the intensity of Bragg-
reflected beams. A systematic introduction of the imaginary potential is illus-
trated in Chapter 6.

2.4. DISPERSION SURFACES

The Bloch wave eigenvalues v; given by Eq. (2.20) depend on both the
crystal-scattering potential (Ug) and the incident electron wave vector. For specific
reflections with known Ugs, a relationship between the incident electron wave
number K and the Bloch wave eigenvalue v is called the dispersion surface, which
is formed by the locus of allowed wave vectors for all beams. All wave vectors
inside the crystal are restricted to lie on the dispersion surfaces. Explicitly speaking,
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Figure 2.5. Dispersion surfaces under the two-
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the dispersion surface in electron diffraction is a plot of allowed values of the z
component of the Bloch wave vector kﬁ’) in the crystal. For simplification, we use
dispersion relations for the two-beam case to illustrate the construction of disper-
sion surfaces.

We first consider the zero-order solution of Eq. (2.10a), where all Fourier
coefficients U, (for g # h) are switched off. Then S; = 0, or [k + g] = K, and
this describes a series of free-electron spheres of radius K centered at each of the
reciprocal-lattice points g parallel to the surface (Whelan, 1986). One sphere is
centered on the origin of reciprocal space and one centered on the reciprocal lattice
point g, as shown in Fig. 2.5. These spheres intersect at the Brillouin zone boundary.
A vector is drawn in the direction normal to the entrance surface of the crystal and
intersecting the vector K at the sphere centered at O. The eigenvalues v; are
calculated from Eq. (2.20) using the actual U value. The values of v; are measured
along the surface normal direction, starting from a point on that K sphere that is
centered at O. Thus the K vector must be drawn first. Then points on the dispersion
surfaces are drawn at distances v; measured from the end point of K along the
surface normal direction n. The complete dispersion surfaces are obtained by
repeating this procedure for each possible beam direction.

Two-beam diffraction is an ideal case in which the intensities of other beams
are zero. In practice, this condition is rarely satisfied. The perturbation effect of
weak beams can be reasonably included in the two-beam theory using the Bethe
potential, which is discussed in Section 2.6. Further studies by Miyake (1959) and
Gjgnnes (1962a) indicated that the two-beam approximation fails to apply in the
range of very short wavelength and small crystal thicknesses, even with the
corrected dynamical Fourier potential. This is due to the increased radius of the
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Ewald sphere, and the shape factor of the crystal for 1 — 0 (or K — ) and
d — 0 result in many beam excitations.

2.5. APPLICATIONS IN CBED

The CBED patterns are formed with an electron probe focused on the sample,
causing diffraction spots to broaden into disks. The incident probe consists of many
plane wave components propagating along different directions, thus forming a
converged conical electron probe, as shown in Fig. 2.6. For an incident beam P, the
diffraction results in a complete point diffraction pattern consisting of Ps as ruled
by the Bragg reflection law. A similar set of point diffraction patterns is formed for
another plane wave component Q. Therefore for cases where there are no disk
overlaps, a perfect registration is retained between each incident beam direction
and the diffracted beams. The intensity profile across the diffracted disk g is called
a rocking curve, which represents the variation of g-reflected intensity with the
change of incident beam direction. Thus each point in the central (000) CBED disk
corresponds to an incident plane wave component and defines a family of conjugate
points differing by reciprocal lattice vectors, one in each CBED disk. The great
power of the CBED techniques results from the fact that so much crystal structural
information, such as crystal structure factors, charge density distribution, symme-
try, strains, unit-cell parameters, and specimen thickness, can be determined quan-

titatively from analyses of CBED patterns (see Spence and Zuo, 1992, and Cowley,
1993, for a review).

Electron probe

Figure 2.6. A schematic ray diagram
of CBED. If only elastic Bragg scatter-
ing is allowed, then source point P
gives rise to conjugate points P, one
in each disk. Source point Q defines a
different incident beam direction and
set of diffracted beams Q' g 0 h
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Figure 2.7. A CBED pattern of silicon viewed along [110] showing structural information contained
in the pattern. The pattern was recorded at 100 keV.

Figure 2.7 shows a CBED pattern of [110] silicon. Fine details within each
diffraction disk are the result of the dynamic diffraction of electrons entering the
crystal from different directions. The symmetry of the intensity distribution indi-
cates the projected central-symmetric and the (001) planar mirror-symmetric struc-
ture of the crystal. Quantification of the intensity distribution in reciprocal space is
a powerful method for determining the crystal structure.

Calculating a rocking curve intensity profile in the angular ranges where there
is no disk overlap is usually performed by the Bloch wave approach

L® =YY " c? c® cPexplomivi-vpd)  (2:232)
P

In CBED, many parameters are involved in the calculation of I,(K). Each of these
parameters can be determined using different techniques. The specimen thickness
is determined from thickness fringes in the diffraction disks under two-beam
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conditions (Kelly et al., 1975). Unit-cell parameters can be determined by the
position of HOLZ line positions in the center disk. Finally, crystal structure factors
are refined from the rocking curves of different diffracting disks by comparing the
calculated Ig(K) with the experimentally measured I,. An automated dynamic
least-squares refinement program has been developed by Zuo and Spence (1991).

Figure 2.8 shows the experimentally observed zero energy loss CBED pattern
(dotted curve) and the many-beam dynamic calculated (solid line) rocking curves
for a BeO crystal (Spence and Zuo, 1992). The refinement of the calculated curve
in comparison with the observed one yields low-index crystal structure factors. For
the line scan across the (00n) systematic row, the amplitude and phase of the (002)
structure factor at 80 kV are determined as

IU®(002)l =0.039592 + 0.00014 A2,  ¢(002) = —0.88478 + 0.017 rad
1U(002)! = 0.00073 £ 0.00006 A2, ¢’(002) =—1.1%0.5 rad
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Figure 2.8. The zero energy loss experimental and computed CBED rocking curve along the (002)
row of BeO at 80 kV. The (000), (002), and (004) disks are indicated. The crystal orientation is near the
[130] zone axis. Specimen thickness d = 70.9 nm. The lower plot shows the difference between
calculation and experiment. (Courtesy of Drs. J. C. H. Spence and J. M. Zuo, 1992)
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and specimen thickness d = 71.16 nm.

If the bonding effect is ignored in a center-symmetric structure, and so that the
atom potential is spherical symmetric, the structure factor Uy is a real function.
However an imaginary component appears in Uy if the atomic potential is distorted
by crystal bonding. Therefore the measurement of U™ provides important informa-
tion on charge redistribution in the crystal due to the solid-state effect. Quantitative
CBED provides the most accurate method for measuring the charge redistribution
of crystals smaller than a few hundred nanometers (Zuo et al., 1938).

If there are disk overlaps in CBED, calculations have to be performed sepa-
rately for different incident beam directions in the overlapped regions, and the
calculated amplitudes are then added coherently, incoherently, or partially coher-
ently depending on the original assumption of the source coherence. For a perfectly
coherent beam diffraction, especially if there are substantial disk overlaps, calcu-
lations using the multislice theory may be more convenient (see Chapter 3).

2.6. CRITICAL VOLTAGE EFFECT

The critical voltage effect is one of the typical examples of dynamic scattering
in electron diffraction. If a crystal is set at the Bragg condition, normally the
diffracted intensity is strong unless the crystal thickness is an integer number of
extinction distances. This is due to the constructive interference of waves scattered
in the diffracted beam direction. However for a particular incident electron-accelerating
voltage, the so-called critical voltage Uy, the diffracted beam intensity of a
second-order reflection 2h is very small for all thicknesses, due to destructive rather
than constructive Bloch wave interference (Nagata and Fukuhara, 1967; Uyeda,
1968; Watenabe et al., 1968). This voltage depends sensitively on the ratio of
first-to-second-order structure factors, and it is used to measure structure factors of
low-order reflections that are particularly sensitive to bonding effects in crystals
(for reviews, see Cowley, 1981; Humphreys, 1979; Reimer, 1984; Spence and Zuo,
1992).

As illustrated in Fig. 2.9, the critical voltage effect occurs at a three-beam
diffracting condition, with 2h in Bragg condition. This case can be treated either
using three-beam theory or two-beam theory with the perturbation of a weak beam
(Uyeda, 1968; Lally et al., 1972). For simplification, we start from the two-beam
theory and consider the perturbation effect of other weak beams.

Discussions in Section 2.3 were based on an ideal two-beam case in which all
other beams were assumed to have zero intensity. One way of including the weak
beam effect is to use the perturbation theory of Bethe and rewrite Eq. (2.12) for
symmetric Laue cases as
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Figure 2.9. The three-beam diffracting condition for the critical voltage effect.

2KSyCh + 2 Un-wCr =2K,vCy, (2.23b)
W

where variable substitutations of h by h’ and g by h were introduced. If h is a

weak beam because KISil >> |Ugl, Eq. (2.23b) can be solved for the two-beam
case as

zUh—h’Ch’ (2.23c¢)
)= W _ UnCo+ Up—Ce
2KSh - 2K,v 2KSh

Substituting Eq. (2.23c) into (2.12) for the two-beam case, Eq. (2.19) is modified
as

[2Kssff— 2K,y v¥4 ](co) i (2.23d)

vy 2KST — 2k || Ce |
where
U2 |Upnl?
2K == ﬂ: — g LA
s§ >, 3%, 2KST = 2K5, - Y o
h
and
V=, - UnUg- (2.24)

2KSh

This effective structure factor is known as the Bethe potential. A more rigorous
derivation using the Green’s function has been given by Gjgnnes (1962b).
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We now apply Egs. (2.24) to illustrate the critical voltage phenomenon, in
which g = 2h satisfies Bragg condition, and h is weak. For a minimum g reflection,
we set UZ = 0. This condition may be met by varying the accelerating voltage.
Using the relation

3 mocd(y — 1) (2.25)
Vo=

solving y from Ugﬂ = 0 (Spence and Zuo, 1992) yields

moco [ﬁz 2V2h } 225
U Oc =

e | 2mge V;,

Equation (2.26) gives an approximate value of the critical voltage Uq. in terms of
the two lowest order structure factors. If the second-order reflection is assumed to
depend mainly on the single-atom scattering property, the first-order reflection,
which is more sensitive to solid-state bonding effects, may be found with high
precision using Eq. (2.26) (for a review, see Fox and Fisher, 1988). Accuracy of
measurements is ultimately limited by the Debye—Waller factor for high-order
reflection and the contrast of the intensity minimum at 2h.

2.7. DIFFRACTION OF LAYERED MATERIALS

The CBED techniques can be applied to study the strain, composition, and
rigid-body displacements across layered materials (or quantum well materials). The
Bloch wave theory developed in Section 2.2 can be extended to calculate the
transmission electron diffraction pattern of layered materials (Rossouw etal., 1991;
Peng and Whelan, 1990). We now consider a material composed of m = 1 to M
layers, as shown in Fig. 2.10. The mth layer is located at z = zn, with thickness
dm. For simplicity, we assume there is no rigid shift between the origins of the two
adjacent layers. The wave function inside the mth layer is written as

Wm(r) 2 a(’) Z om exp[zﬂi(K + gm)'l‘+ 27tivim(z _ Zm)] (227)

where Vv, and C(',Z, are the eigenvalues and eigenvectors, respectively, of the Bloch
wave solution of the mth crystalline layer and g, are the corresponding reciprocal
lattice vectors. An analogous relation holds for the (m+1)th layer,

Y1 (r) = 2 o Z Cém, exp[27i(K + gmi1) T+ 2700V 141 (2 — Zm+1)] (2.28)

i 8m+1

Matching Egs. (2.27) and (2.28) at the interface z = zi+1 for the ZOLZ reflections
and splitting r = (b, z), we obtain
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Figure 2.10. A schematic diagram showing layered structures along the beam direction.

2 o 2 gm+1 EXP(270igm+1-b) = 2 o Con exp(2rignb + 2701V imdim)

8m+l 8m

Multiplying this equation by exp(27tih+1-b) and integrating over b, we obtain

Z oD P za(z)z CD 5wy — gm) exp(27iV indm)

Multiplying both sides by Cﬁ,m, summing over Am+1, and using the orthonormal
relation in Eq. (2.16b) yields

z a¥ 2 z C(',),, d{,,», (st — gm) expaivimdm) (2.29)

i 8m hmi1

This relation correlates the superposition coefficients of the mth and (m+1 )th layers.
For m = 1, the boundary condition is satisfied by choosing af C(’ Using Eq.
(2.29), it is possible to determine the wave function inside each layer.

Two simple relations can be derived from Eq. (2.29). If the two adjacent layers

have the same reciprocal lattice base vectors (i.e, same direction and same magni-
tude), then

=0 eXp27iVjmdm) (2.30a)
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If the two layers have different reciprocal lattice base vectors, so that hy+1 # gm
unless h,,+1 =0 and g =0, then

o =Y ol C8) 8 exp2nivindnm) (2.300)

Finally for a case where two adjacent layers have the same set of reciprocal
lattice base vectors, a rigid shift AR, of the mth layer origin with respect to the
origin of the (m+1)th layer may be incorporated into the calculation by multiplying
the Bloch wave coefficients with a phase factor, i.e.,

9 - D exp(-27ign-ARm) 2.31a)

The preceding discussion makes it possible to apply the Bloch wave theory in
calculating CBED patterns of layered materials if the incident beam is assumed to
be perpendicular to the surface plane.

2.8. HOLZ REFLECTIONS

The theory outlined in the last few sections was based on an approximation of
symmetric Laue cases for which g-n = 0. This condition becomes g; = 0 if the foil
normal is antiparallel to the z axis; thus the theory is restricted to ZOLZ reflections.
To include HOLZ reflections, we start from Eq. (2.12) by defining

B,=(1+241"2¢, (231b)
K
where components normal to the crystal surface are g, = g'n, h, = h'n, and K, =
K'n, so that Eq. (2.12) is rewritten as

2KS,B, Us—Bh

_orete 4 =2K,vB 231c)
1+ (gn/Kn) %{(1+gn/1<n)[1+(h,,/1<n)]}”2 e

This is a fundamental eigenvalue equation that includes all HOLZ effects and
boundary inclination effects. The only approximation made in deriving Eq. (2.31¢)
is to ignore the v? term for high-energy electron diffraction in the Laue case. The
FORTRAN program provided by Spence and Zuo (1992) calculates Eq. (2.31), so
that HOLZ reflections are automatically included.

2.9. REAL-SPACE BLOCH WAVE THEORY OF
ZOLZ REFLECTIONS

The Bloch wave theory presented in the last few sections is essentially a
reciprocal-space theory in which the differential equation was solved in reciprocal
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space. The dimension of the matrix is the number of beams involved in the
calculation. The numerical calculation of this theory, however, may be quite
involved especially for zone axis patterns in which many beams are involved. An
?alternative Bloch wave theory is thus introduced to solve the Schrodinger equation
in real space (Howie, 1966; Berry, 1971; Buxton et al., 1978; Vincent et al., 1984;
for areview, see Bird, 1989). This theory is particularly convenient for calculating
zone-axis CBED patterns.

2.9.1. Projected Potential Approximation

Before we present the real-space Bloch wave theory, it is important to examine
the portion of the crystal potential that is responsible for ZOLZ reflections. In
zone-axis patterns, the dominant Bragg reflections are distributed within the ZOLZ.
If g is written as (g, g), the crystal potential is written as

U =Y, Ug exp(2nign) =Y, Ug exp(2migyb+ 27ig.2)
4 4
= UO(b) + U (b,z) (2.32a)

where

UO(b) = Y Uy, exp(2rigyb) (2.32b)
8b

is the projected potential, and
UDm =Y expnigz) Y’ Ug exp(2nigyb) (2.32¢)
80 &

Whic'h is th.e potential responsible for HOLZ reflections because g; # 0. Therefore
the(:))dlffract.xon of ZOLZ reflections is directly determined by the projected potential
U®(b). This means that the ZOLZ approximation is the projected potential approxi-

mation; the projected potential approximation actually restricts the theory to the
ZOLZ reflections only.

2.9.2. ZOLZ Reflections

Starting from the Schrédinger equation and factoring out the rapid variation in
the z direction,

Y(1) = expriK-¥) D(b,z) (2.33)
Substituting Eq. (2.33) into Eq. (2.5) gives
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dPD(b,2) (2.34)

V3 + 472U PD(b,7) = —4niK, .

where the V3 operator acts only on the transverse coordinate b; 0*®/97* was
dropped under the small angle-scattering approximation;. and 8¢(b,z)/ ox _and
0d(b,z)/dy are neglected because K; >> K and K; >> K. Using the potential given
in Eq. (2.32b) for the ZOLZ reflections, Eq. (2.34) becomes

0D(b,z) (2.35)

[V + 472U (D] D(b,2) = 47K, =

Thus the solution of Eq. (2.35) can be directly written (Doyle and Berry, 1973) as

®=Y & exp({si2) 7i(b) (2.36a)
j
where
(= { (2.36b)
" 4zK,

and 7j(b) is a two-dimensional Bloch wave solution of
(V3 + 42U (by]zi(b) = 557(b) (2.37)

The two-dimensional Bloch wave 7;(b) satisfies the following orthonormal relation
(Ashcroft and Mermin, 1976; also see Section 2.2.3):

[ bzt @)zb) =05 2.38)
Using the orthonormal relation of the C coefficients, it can be proved directly that

3 7(b) 7(b) = 5(b - b) (2.39)

This means that {7j(b)} is a complete orthonormal function set. These are ?mpf)rtant
relations that make it possible to expand an arbitrary conyergent function in ‘the
representation of { 7j(b)}. This point is demonstrated in Section 10.3 for the_ss)lutlon
of Green’s function. Coefficients &’ are determined by the boundary condition at z

=0. If the incident electron is described by @(b,0), the boundary condition requires -

®&(b0)= Y &/(b) (2.40)

J

Multiplying Eq. (2.40) by 7] (b), integrating over b, and using Eq. (2.38) yields
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¢ = [ dbd(b,0) () 2.41)

At the exit face of the crystal slab z = d, the amplitude for electrons scattered to u
in the two-dimensional reciprocal space is

A() = 2 & exp(l sid) J.db exp(=2miu-b) 7j(b) (2.42)
J
the intensity distribution J = 1A (u)P.

Compared to the Bloch wave theory in reciprocal space (Section 2.2), the most
important advantage of the real-space Bloch wave theory is that the diffraction of
a finite incident electron probe of &(b,0) can be calculated without repeating the
calculation for each plane wave component within the incident conical probe. This
is convenient for the case of coherent convergent beam electron diffraction, in

which disk overlaps may occur. The calculation of Bethe theory, however, has to
be performed separately for individual incident plane wave components.

2.9.3. Effects of HOLZ Reflections

The HOLZ reflections can be included in this theory using the perturbation
technique (Buxton, 1976; Vincent et al., 1984), in which the superposition coeffi-
cients of Bloch waves are assumed as z-dependent, i.e.,

o= Z &(2) exp({sj2) 7i(b) (2.43)

J

and the upper layer potential U* is treated as a perturbation. This approach is
exactly equivalent to the usual way of treating a time-dependent perturbation, in
which z takes the place of time and the upper layer potential UH(b,z) represents
the time-dependent perturbation. Substituting Eq. (2.43) into Eq. (2.5), the first-
and second-order perturbation terms can be solved by the iteration method (for a
review, see Bird, 1989).

2.10. DIFFRACTION CONTRAST IMAGES OF
IMPERFECT CRYSTALS

Diffraction contrast imaging, a powerful technique for determining dislo-
cation structures in crystals, is based on the following mechanism (Hirsch et al.,
1977). The image is formed by selecting a single Bragg reflected beam using
the objective aperture. The intensity of the Bragg beam is perturbed by the
variation of local diffracting conditions due to the strain field of the dislocation.
Thus this type of imaging is usually referred to diffraction contrast imaging.
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Figure 2.11. (a) Bright-field and (b) g = (20 2 0) dark-field diffraction contrast images of Polycr.ystal-
line @-A1,03 recorded under the two-beam diffracting condition near [0001] zone. The insert is the
diffraction pattern.
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This section describes the basic theoretical approach for calculating the diffraction
contrastof images. An excellent review has been given by Amelincks and Van Dyck
(1993) on the fundamental theories of diffraction contrast imaging and associated
applications.

Figure 2.11 shows the bright-field and dark-field diffraction contrast images
of dislocations in a polycrystalline @-Al,O3 specimen. The dislocation lines are
clearly resolved in both images. The intensity variation near dislocation lines results
from dynamic diffraction from distorted lattices near dislocation cores. The contrast
is due to the variation of the local diffracting condition, such as the excitation error,
from that of perfectly structured lattices. The contrast is very sensitive to the nature
of the dislocation, crystal orientation, incident beam direction, and crystal thick-
ness. Therefore dynamic simulations are usually necessary if we intend to study
detailed lattice distortion near the dislocations. But, as shown at the end of Section
2.10.4, no simulation is needed if we are interested only in determining the Burgers
vector of dislocations. We now consider the theoretical approach for simulating
diffraction contrast images.

2.10.1. Potential of Imperfect Crystals

In practice, atomic displacements can be introduced by defects, dislocations,
orstrain. For a general case, atom displacement may be described by a displacement
vector R(r), which depends on the position of the atom. Thus the potential
distribution in the crystal under the rigid-ion approximation is written as

Um®=3.Y, Us(r— R~ 1z~ R(D) (2.44)
n o
Using Eq. (1.17), the reciprocal lattice vector can be introduced as

=YYy J. du Uy(u) exp{27iu-[r- R, - i — R()]}

n «a

= 2 2 Ux(g) exp{—2mig-[1a + R(W)]} | exp(27ig-¥) (2.45)
g |«
The Fourier coefficient of the modified potential is

Uy(v) = U, exp[-2mig R(D)] (2.46)

Therefore the distortion of the crystal lattice by defects introduces a position-
dependent phase factor in the Fourier coefficient of the crystal potential.
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2.10.2. Modified Bloch Wave Theory

For an imperfect crystal, the wave function usually does not obey the Bloch
theorem and cannot be expanded into a Fourier series. Alternatively the solution of
the Schrodinger equation is written as (Hirsch et al., 1977; Takagi, 1962 and 1969;
Howie and Basinski, 1968)

Y= Z 0(0) exp[2mi(K + g + Sp)1] (2.47)

8

where I(K + g + Sg)l = K and S; = S, Z is the excitation error. Substituting Eqgs.
(2.45)- (2.47) into Eq. (2.5), we obtain

z{ﬁ Vi + ;’; (K+g+Sg) Vo + Y, ¢n Ug-n exp[2mi(h — g) R
4 h

+27i(Sh — Sg) -t Jexp[2ni(K+ g + S;) 11 =0 (2.48)

Providing that all terms in the curly bracket vary slowly with r, R(r) does not change
significantly in a lattice distance and the V2¢, term is negligible in comparison with
the term (K + g + Sg)- V@, then we have

(K+g+Sg) Vg =i Y, ¢ Ug-n exp[2mi(h — g)-R+ 27i(Sh — Sg) 1] (2.49)
h

This is the basic equation of the modified Bloch wave theory. The left-hand side of
Eq. (2.49) indicates that it is necessary to differentiate ¢g in the direction of (K + g
+ S,). Equation (2.49) was first proposed by Takagi (1962 and 1969) and Taupin
(1964) for approaching crystals with defects, dislocation, or strain, and it is thus
called the T equation. To simplify this equation and make it useful in image
calculation, we now discuss the column approximation.

2.10.3. Column Approximation

The column approximation is usually assumed in image simulations of defects
and dislocations. Figure 2.12 illustrates the column approximation (Hirsch et al.,
1977; Howie and Whelan, 1961). A dislocation is situated at D inside the foil. An
electron wave is incident on the top surface. The dislocation line causes a displace-
ment of an atom in the column along AB from its true position by an amount R that
depends on its distance z from the upper surface. The column approximation
amounts to assuming that the electron wave function at B is the same as that at the
lower surface of a crystal of infinite lateral extension, with the same displacement
R(z), depending only on z, and not on the position of the column. Such a crystal
can be considered an assembly of thin crystal rods, each perfect but displaced

e

Dynamic Elastic Electron Scattering | 571

<
=

Dislocation :
I

| R(z)
Figure 2.12. A column approximation used to cal- I
culate the diffraction contrast images of dislocations. Crvstal I
The crystal is assumed to be composed of parallel " 1

columns. Within each column, the local lattice dis-
placement R is assumed to depend only on z. The (x,
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relative to each other. The wave function at the exit face of each column (or rod)
depends only on the scattering of that column, so there is no interaction between
columns. The width of the column is about 2 nm. This approximation may not
be valid at dislocation cores where a rapid variation of R is possible. A rigorous

discussion of the column approximation was given by Howie and Basinski
(1968).

2.10.4. Howie-Whelan Equation

‘ Contrast in dislocation images is produced by the variation of local crystal
orientation due to the atom displacement R. This results in the intensity variation
of local reflected Bragg beams. This type of image can be simulated from column
to column using full dynamic diffraction theory. The scattering of each column is
equivalent to the scattering of a perfect crystal without considering the effects of

.its .neighbor columns. In this case, ¢ is approximated to depend only on z. If the
incident beam is along the z axis, so that

(K +g+8,) Vg, ~ Kk 2=

dz’
Eq. (2.49) becomes
dag i
Fal W ¢ exp[27i(h — g)-R + 27i(Sh — Sg)-r] (2.50)
= g
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This is a many-beam equation for calculating the contrast of dislocations. Equation
(2.50) can be solved exactly if there is no lattice distortion (i.e., R = 0) (Van Dyck,
1976).

Under two-beam approximation, Eq. (2.50) reduces to the Howie-Whelan
equation (Howie and Whelan, 1961),

déo _ mi do + 2 ¢, exp(2rig R +27iS; 1) (2.51a)
dZ é() g

i I e + 2 po exp(—2mig R — 27iSg D) (2.51b)
dz & &

Equation (2.51a) and (2.51b) are the basic equation applied to simulate the diffrac-
tion contrast images. We now discuss the diffracting condition under which the
contrast of dislocations disappears.

From Eq. (2.51), it is clear that the dislocation contrast disappears if g-R = 0.
For a general dislocation, the displacement vector R is directly related to the
Burgers vector bg and bgxup, where up is the direction of the dislocation line. In
general, the reflected intensity of g is not affected if atom displacements are
restricted to the reflecting plane of g. Therefore diffracting conditions under which
the contrast of dislocations disappears are

gbg=0 g-(bpxup) =0

These are the general rules for determining the nature of dislocations in TEM. The
condition g-bg = 0 means that atom displacements are restricted in the plane
perpendicular to g; thus no contrast is produced if the image is recorded using this
Bragg reflection.

The Howie-Whelan equation [Eq. (2.51)] is the fundamental equation for
simulating diffraction contrast images recorded under two-beam conditions. Figure
2.13 shows a comparison of the experimentally observed stacking fault images in
TiAl for two different zone axes (Fig. 2.13a) with simulated images for stacking
faults bounded by partial dislocations (Viguier et al., 1994). For TiAl, the majority
of stacking faults and their bounding dislocations were observed to be completely
out of contrast for g = [2 0 2] because g-R = 2nz. For g = [2 2 0], however, the
bounding partial dislocations were visible, but faults were invisible. These obser-
vations indicate that faults are lying in the (111) plane (i.e., R =+ 1/3 [111]) and
partial dislocations have a Burgers vector parallel to g = [1 2 1]. Figure 2.13b is
simulated for an extrinsic stacking fault with a double Schckley partial dislocation
of bg = 1/3 [1 2 1]. Simulated fault images corresponding to intrinsic stacking
faults and extrinsic stacking faults (without partial dislocations) are shown in
Fig. 2.13c—e. The best fit is found in Fig. 2.13b. Thus the stacking fault is
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g = [200] g =[020]

Experimental images

(a)

Simulated images

(b)
bp =3 [121]
Extrinsic fault

©
bp =g [121]
Intrinsic fault

(d)
by = % [121]
Intrinsic fault

(e)
bp = % [121]
Extrinsic fault

50nm

Figure 2.13. (a) Experimental bright-field images of a stacking fault dipole in TiAl recorded under
tv.vo—beam diffracting conditions of g = [200] (left-hand column) and g = [020] (right-hand column); (b)
§1mu1ated for an extrinsic stacking fault with a partial dislocation of bg = 1/3 [1 2 1]. (c)—(e) Simulated
lr.nages for extrinsic (without bounding dislocations) and intrinsic stacking faults under identical
diffracting conditions: foil normal n = [2 T 4], d = 115 nm, beam direction B = [019] and S, = 0.006

-1
nm ) for g =1[200]; B = [506] and Sg=0.019 nm™! for g = [020]. The best fit is found in (b). (Courtesy
of Viguier et al., 1994)

e.xtrinsi-c and bounded by partial dislocations with Burgers vector 1/3 [1 2 1]. For
simulations of electron diffraction contrast images of arbitrary displacement fields,

the fprlogram package SIMCON provided by Janssens et al. (1992) could be very
useful.
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2.10.5. o Coefficient Method

We now introduce an alternative treatment of electron diffraction in the
distorted crystals under the column approximation. This approach is applied in
Section 2.11 to calculate the contrast of weak beam images. We first write the
solution of the Schrodinger equation as

PH=Y, a0 Y CPexpl2ni(K + g)r+ 2miviz] exp(-2migR)  (2:52)
i g

This theory is expressed in the form of Bloch wave coefficients, which are assumed
to depend only on z, based on the column approximation. The comparison of Eq.
(2.52) with Eq. (2.47) yields

00 = Y, a(2) C exp[-2niSy T+ 27iviz] exp(-2mig-R) (2.53)

1

Substituting this equation into Eq. (2.50) and using Egs. (2.13) and (2.16), we obtain

do9(z) _

i i % d R
T =2mi Za(‘)(z) exp(27i(vi—vj)2) Y, COCY % (2.54)

i 8

Equation (2.54) represents the change in amplitude of the jth Bloch wave in a crystal
slice of thickness dz at a depth z, due to the change of local orientation. This theory
is more convenient for calculating the weak beam image.

2.11. WEAK-BEAM IMAGING

As illustrated in the last section, the contrast of dislocation lines is determined
by the magnitude of the local lattice distortion, and the image resolution is no better
than 2 nm. The resolution of diffraction contrast images may be improved in the
dark-field images recorded by using weak diffracted beams (Cockayne et al., 1969).
A simple qualitative description of the weak-beam imaging technique follows. If a
perfect crystal is oriented at the exact Bragg position, the corresponding diffracted
beam is strong (unless the crystal thickness happens to be an integer multiple of the
extinction distance). As the crystal is tilted away from the Bragg position, the
intensity in the diffracted beam decreases, so that the beam becomes a weak beam.
If the crystal contains a dislocation, lattice planes around the dislocation are locally
tilted, and hence some of these planes may locally be tilted back into the Bragg
position, as shown in Fig. 2.14. If this is the case, locally scattered intensity from
perfect crystal regions is weak, but intensity scattered locally from the region
satisfying the Bragg condition is strong (Hirsch et al., 1977).
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Figure 2.14. The three-beam diffracting condition for weak-beam imaging.

Figure 2.15b shows a weak-beam image of the same specimen area in Fig.
2. 1 1 It is apparent that the dislocation lines are much thinner than those appearing
n e_lther the bright-field or the dark-field images in Fig. 2.11. The grain boundaries
which are hardly seen in the bright-field image, are clearly resolved in the weak’

beam imagg. There appears to be much less dynamic diffraction effect in the
weak-beam image.

Figure 2.15. (a) Three-beam electron diffracting condition for recording the dark-field weak-beam

;magft, shown in (b), of the polycrystalline a-Al,03 specimen used for Fig. 2.11. The beak used for
orming the weak-beam image is indicated by an arrowhead.
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The weak-beam image is usually taken using a weak —h beam when a +g beam
is set at Bragg condition (Fig. 2.14). We now use Eq. (2.54) to illustrate the dynamic
description of weak-beam imaging of imperfect crystals,

o) o . dRi(7) (2.55)
o 2 (@) exp(2ribviz) — -
where
Riz) =21y, COcP* gR  Avj=vi—v; (2.56)
4

Using Eq. (2.55), we perform the following mathematical operation (Cockayne,
1972):

d
{dz 2 60(q) explRICQ)]

d ij 2.57)
ARV _ ) (
= Idz 2 a(z) dz(Z) exp[27iAviz — R¥(2)]
0 iy
Integratingtheleft-hand sideofthisequation,weobtain
a9(d) = exp[R/(d)] x
4 ij 2.58)
- ARV ; (
{f dzy a")(z)d—dz(}l exp[2miAviz — Ri(z)] + a?(0)}
6 s

i

The purpose of the preceding mathematical operation is to exclude the contribution
of the terms with i = j. The first-order solution of Eq. (2.58) is obtained by taking
a® = on the right-hand side; thus

a¥(d) = exp[R¥(d)] x
d ij 2.59)
[, dRY(@) . 5 o (
{2 CS) sz v exp[2iniAviz — R(2)] + Cy' }
i#f 0
If dRV(z)/dz is a slow-variation function of z, the magnitude of a®’(d) depends
approximately on
d
| dz expi2nitviz - Ri()1.
0
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The integral is maximum when [27iAviiz - R¥(z)] is constant (Cockayne, 1972) or
in an equivalent form

o dRUZ)
27iAv;j F e
or
vi-vi+ Y PP d((gI%R) -0 (2.60)
8

Under the two-beam approximation, this condition becomes (Cockayne, 1972)

dgR)
S, + = 2.61a
p+ 2 (2.61a)
This is the condition for dislocations to show bri ght contrastin a weak-beam image.
This relation simply means that the local orientation variation has to reduce the
excitation error of the g beam to satisfy the Bragg condition. For imperfect crystals and
under the column approximation, the effective local excitation error is given by

d(gR
Si’em=Sg+ (gz )

The condition Sgef’) = 0 means that the local region satisfies the Bragg condition,
thus giving strong reflection intensity.

The column approximation was assumed in weak-beam imaging theory. How-
ever the large scattering angle between —h and g reflections shown in Fig. 2.14
could significantly increase the width of the column in some cases (Howie and
Sworn, 1970; Lewis and Villagrana, 1979), resulting in incorrect positions of the
dislocation contrast. It is thus necessary to examine each individual case carefully.

As just pointed out, the weak-beam image is formed due to the variation of the

excitation error w with the local orientation. The dynamic diffraction effect in the
~h beam is greatly reduced due to strong excitation of the g beam. For crystals
containing grain boundaries, dislocations at interfacial regions are best seen in the
weak-beam image; Fig. 2.16 shows such an example. The grain boundary is hardly
seen in the bright-field image (Fig. 2.16a); it becomes relatively easy to see the
interfacial dislocations in the dark-field diffraction contrast image (Fig. 2.16b). The
fine details of dislocation are clearly seen in the weak-beam image (Fig. 2.16¢), but
the quantitative interpretation of the contrast is rather difficult.
. Weak-beam imaging is best suited for imaging dislocations, but it is almost
impossible to apply it to determine the nature of dislocations. The two-beam
diffraction contrast images are very useful for determining the Burgers vector of
dislocations.



58 Chapter 2

Figure 2.16. (a) Bright-field, (b) g=(202 0) dark-field, and (c) weak-beam images of a polycrys.talline
a-Al203 specimen showing the advantages of the weak-beam technique for imaging interface disloca-
tions. The beam used to form the weak-beam image is indicated by an arrowhead.
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2.12. Absorption Effect in Dynamical Calculations

Interaction between the incident electron and the crystal is quite complex.
Besides elastic scattering, inelastic excitations, such as X-ray emission, photon
emission, and atom ionization, are usually involved. For thin crystals, the prob-
ability of inelastic scattering is usually small. As shown in Chapter 6, inelastic
scattering of electrons is equivalent to introducing an imaginary potential into the
elastic-scattering equation. This is usually known as the absorption effect. In the
Bloch wave picture, taking the two-beam case as an example, one Bloch wave is a
maximum between the columns of the atomic row, and the other Bloch wave is a
maximum on the atomic rows (see Fig. 2.4). It is thus expected that the former is
weakly scattered or absorbed and the latter will be strongly scattered or absorbed
due to different inelastic-scattering processes. This is the so-called anomalous
absorption effect. We can include absorption by replacing V(r) with V(r) +i V'(r).
In general, IV(r)l >> IV'(r)], so we can use the first-order perturbation method to
estimate the effect of absorption. The perturbation iV’ results in a change AF in the
energy of the Bloch wave B; given by

AE = [ dr B(p) [-ieV'(9] Bi(o) 2.61b)

The change in energy is equivalent to a change in K. Adding an iU’} term in Eq.
(2.13), we have

2KSyCy+ 3 Ug-hCh=2KyCy—i Y. Ugly Ci
g#h g#h

This is equivalent to adding an imaginary component in the wave vector along the
z direction. Thus the perturbation effect to the electron wave vector is

mAE  m,i
hK,

Using the Bloch wave expression in Eq. (2.17), the final calculation gives (Hum-
phreys, 1979)

| aeBi @ eV @180

y 1 Ve o, i (2.62)
8

Hence v} is the imaginary part of the wave vector for the ith Bloch wave, and it can
easily be calculated from the eigenvectors and the U’ matrix. The following
substitutions are thus made:

Vi— v+ v} (2.63a)
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Ug = U +ilg (2.63b)
1 1 i (2.63¢c)
— S+

Ce & &

with g = K/Ug. This is the phenomenological treatment of the absorption effect
in electron diffraction. The calculation of the imaginary potential is illustrated in
Chapter 6.

2.13. SUMMARY

As a summary of this chapter, we have introduced the Bloch wave theories and
their applications in electron diffraction and imaging. The Bethe theory is powerful
particularly because of its physical insight for evaluation of the contribution of
different Bloch waves. This theory is much more convenient for sophisticated
analytical expressions when there are only a few beams involved. The Bethe theory
is best suited for CBED calculations in reciprocal space if there are no disk overlaps,
but the calculations can be easily performed only for three-dimensional perfect
crystals. Real-space Bloch wave theory is convenient for simulations of diffraction
contrast images and CBED if there are disk overlaps. A detailed comparison of the
Bethe theory with other theories, presented in the next few chapters, is given in
Section 4.5.

Dynamic Elastic Electron Scattering Il
Multislice Theory

For simulations of electron images, the Bloch wave approach is more convenient
.for dealing with these cases in which either the crystal contains no defects or the
1mage resolution is so low that the column approximation holds. When the image
resolution approaches the atomic level, the dominant contrast mechanism is phase
contrast, and the effect of diffraction contrast is minimized. In this case, it is more
convenient to apply the multislice theory, particularly when defects are present in
the crystal. The most important advantage of the multislice theory is that it does
not require three-dimensional periodicity of the crystal; thus images of interfaces,
surfaces, and dislocations can be simulated. Chapter 3 outlines the theoretical
scheme of the multislice theory and its applications. Methods to improve the theory
are illustrated to include HOLZ reflections accurately.

3.1. PHYSICAL OPTICS APPROACH

The multislice many-beam dynamic electron diffraction theory of Cowley and
Moodie (1957) was originally derived from the physical optics approach, in which
electron transmission through a crystal is represented by transmission through a set
of two-dimensional phase objects, as shown in Fig. 3.1. The crystal is cut into many
slices of equal thickness Az in the direction perpendicular or nearly perpendicular
to the incident beam. This treatment is usually convenient if incident electrons are
along one of the low-index zone axes. When slice thickness tends to be very small,
the scattering of each slice can be based on the projected potential approximation.
If the backscattering effect is negligible, the transmission of the electron wave
through each slice can be considered a two-step process—the phase modulation of
the wave by the projected atomic potential within the slice and the propagation of
thg modulated wave in a vacuum for distance Az along the beam direction before
striking the next crystal slice (Fig. 3.1). The projected potential approximation was
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